DETERIORATIONS IN BIOLOGICAL AND BIOCHEMICAL ASPECTS OF BIOMPHALARIA ALEXANDRINA SNAILS EXPOSED TO METHANOL EXTRACT OF CALLISTEMON CITRINUS LEAVES

By

AZZA H. MOHAMED¹, GAMALAT Y.OSMAN¹, MOHAMED A. EL-EMAM², HODA ABDEL-HAMID² AND RASHA E.M. ALI^{2*}

Department of Zoology, Faculty of Science, Menoufia University¹, Shebin El-Kom, and Department of Medical Malacology, Theodor Bilharz Research Institute², Embaba P. O. Box 30, Giza, Egypt (*Correspondence: roshaezzat@yahoo.com)

Abstract

Schistosomiasis is one of the deleterious parasitic diseases in many developing countries. One important approach to control the disease is to eliminate its intermediate hosts. Therefore, methanol extract from *Callistemon citrinus* leaves was evaluated against biological & biochemical aspects of Schistosoma mansoni infected and uninfected B. alexandrina snails, in addition to examination the histological changes in tissues of the snails' digestive gland. The plant extract exhibited considerable molluscicidal potency against B. alexandrina snails. The egg-laying capacity and reproductive rate (R_0) of S. mansoni infected and uninfected snails were suppressed post exposure to LC25 of methanol extract for 24h/week for 4 successive weeks. Reduction rate of R_0 for snails infected only and those infected treated with LC₂₅ were 65.8% and 70.9%, respectively. Infection rates of *B. alexandrina* snails with *S.* mansoni and cercarial production/infected snail were reduced as a reflection of their exposure to LC_{10} of the plant extract either pre-, during or post their exposure to miracidia. The total number of hemocytes of S. mansoni infected and uninfected snails was elevated post 24h of exposure to the plant extract. However, it was reduced after 4 weeks of successive exposure to the extract, but the large granulocytes were elevated. Also, exposure of B. alexandrina snails (infected and uninfected) to the plant extract caused deleterious morphological changes in their hemocytes. The activities of antioxidant enzymes LPO, CAT & SOD were elevated in tissue homogenate of uninfected snails after one week of exposure to the extract, while that of GSH was decreased. Moreover, the plant extract deteriorated the histological characters of digestive gland cells in treated snails ranged from degeneration and necrotic of its tubules, atrophy of different cell types and hyaline substance in enlarged digestive lumen..

Key words: Biomphalaria alexandrina snails, Callistemon citrinus, Schistosoma mansoni, hemocytes, antioxidant enzymes, histology.

Introduction

Schistosomiasis, an acute and chronic parasitic disease, is a major health problem in tropical and subtropical countries (WHO, 2016). One of the methods for controlling schistosomiasis is to delink the life cycle of the parasite by combating its snail host(s). Control is a key intervention to achieve the World Health Assembly's goal for schistosomiasis elimination (King and Bertsch, 2015). There is an increase demand to develop new molluscicides of medicinal plant origin, as alternative to chemical ones, which proved to have several advantages over the synthetic compounds (Belet, 2015). The body cavity of fresh water snails (Gastropod) is filled with hemolymph which contains dissolved hemoproteins and several kinds of hemocytes which are the principal line of cellular defense involved in destruction of *S. mansoni* larvae inside the snail intermediate host (Larson *et al*, 2014). The response patterns, density and functions of hemocytes, can be affected by pathogens, xenobiotics and parasites (Livingstone *et al*, 2000).

Immune functions are complemented by an array of killing mechanisms release of degradative and oxidative enzymes (Renwrantz *et al*, 1996) and high reactive oxygen metabolites generation (Arumugam *et al*, 2000). Antioxidant enzymes activity proved important to clarify immune response of organisms exposed to different stresses (Dhawan, 2005).

Plants contain a variety of antioxidant and free radical scavenging activities (Sampath *et al*, 2016). *Callistemon citrinus* known as Bottle brush of family Myrtaceae has a great medicinal importance; molluscicidal potency (Gawish *et al*, 2008), antioxidant and hepatoprotective activities (El-Dib and El-Shenawy, 2008) and antibacterial and antifungal properties (Dongmo *et al*, 2010).

This study aimed to evaluate the impact of methanol extract of *Callistemon citrinus* leaves on biological, histological and imm-unological parameters of *Biomphalaria ale-xandrina*.

Materials and Methods

Biomphalaria alexandrina snails (7-9mm) were collected from irrigation system in Giza Governorate. They were examined for natural trematode infections, then negative and healthy specimens were maintained at Department of Medical Malacology, Theodor Bilharz Research Institute (TBRI), before usage; snails were kept for 4 weeks (10snails/L dechlorinated water, $25\pm1^{\circ}$ C).

Miracidia: *S. mansoni* ova were obtained from Schistosomiasis Biological Supply Center (SPSC), TBRI, left in clean dechlorinated water for hatching under a desk lamp, fresh hatched miracidia were used in bioassay and infection tests.

Plant species: *Callistemon citrinus* (Myrtaceae) was collected from the Giza Zoo, and was kindly identified by Dr. Zaki Turky, Prof of Plant Taxonomy, Department of Botany, Faculty of Science, Menoufia University. The leaves were washed, shade dried, powdered by an electric mill and stored in dry clean dark glass bottle.

Plants' extract: Leaves dry powder was extracted by soaking of 25g/250ml 95% methanol for 3 days. Solvent was filtered, distilled off under vacuum and residues were stored in clean dry dark bottles (Kamel *et al*, 2011).

Bioassay: A series of concentrations was prepared from methanol extract of *C. citrinus* leaves on the basis of weight/volume. Three, each of 10snails/L were prepared for each concentration. Another three replicates in dechlorinated water were used as control $(25\pm1^{\circ} \text{ C})$. Exposure and recovery periods were 24 h for each. Mortality rates (LC₅₀ &LC₉₀) were calculated using the Probit Prob ananslysis (ver 20 for Windows).

Effect of methanol extract on mature B. *alexandrina*: The sublethal effects (LC₁₀ & LC_{25}) of methanol extract on reproductive rate, histological features of digestive gland, morphology of hemocytes and types and some antioxidant enzymes of normal and S. mansoni infected snails was evaluated 4 weeks post exposure. Snails were divided into 4 groups: G1 was maintained as untreated and uninfected control group, G2nd was exposed to S. mansoni miracidia representing infected group, G3 was exposed to sublethal concentrations of methanol extract as treated uninfected group, and G4 was exposed to both methanol extract and S. mansoni miracidia representing treated-infected group.

Egg-laying capacity: Six groups of adult snails were prepared. Two were untreated with methanol extract and kept as control uninfected and control infected. Others were exposed to LC_{10} & LC_{25} of methanol extract for 24h weekly for 4 successive weeks as infected treated and uninfected treated. Three replicates, each of 10 snails as 7-9 mm/L, were used for each snail group. Concentrations were weekly changed by fresh ones. Snails were daily fed oven dried lettuce leaves. Aquaria of treated and untreated snails were provided with foam sheets for oviposition. Eggs laid on these sheets and on the aquaria walls were weekly counted using a stereomicroscope and hand lens (10x). Dead snails were removed daily and the following parameters were weekly recorded (Mohamed et al, 2012). Lx (survival rate as a proportion of corrected one), Mx (number

of eggs/snail/week) and R_0 (reproductive rate: summation of Lx Mx).

Infection rate effect on *B. alexandrina*: exposed to miracidia as 10miracidia/snail, for 24h illumination. They were maintained in clean dechlorinated water $(25\pm1^{\circ}C)$ for prepatency. Snails were exposed to LC_{10} & LC_{25} of methanol extract at 1day pre-, during and 15 days post-exposure. Three replicates, each of 10snails/L, were prepared for each concentration. Another three replicates were exposed to miracidia and similarly treated as the experimental snails to cercarial emergence.

Effect on histology of B. alexandrina: Four groups of snails were used. Two were untreated with C. citrinus methanol extract; one was as clean control and 2nd was exposed to S. mansoni miracidia (untreated infected). The other two were treated with LC_{50} of the extract for 24h, one was as treated only and the second group was exposed to S. mansoni (treated infected). Digestive gland of survived snails of each group was dissected out and fixed in a Boun's solution. i.e., digestive gland of snails exposed to the plant extract only were prepared after 24h of treatment, but infected treated and infected untreated groups were done after 1 & 3 weeks of miracidial exposure, respectively. Thin sections (5µm) were prepared and stained with Delafield's hematoxyline and eosin (Ragheb et al, 2013). Sections were examined and photographed by the Carl Zeiss, Germany microscopy.

Effect on snails' hemolymph and antioxidant enzymes: For total hemocytes number and types, six groups of *B. alexandrina* were used. G1 & G2 were exposed to LC_{10} & LC_{25} of plant extract only for 24h weekly for 4 successive weeks (treated normal). G3 & G4^t were individually exposed to *S. mansoni* miracidia (5miracidia/snail) for 24h, followed by exposure to LC_{10} & LC_{25} as in G1. G5 was exposed to miracidia only (untreated infected or control infected), and G6 was kept as clean control (untreated normal). Hemolymph samples were collected from survived snails in each group after 24h, 1, 2 & 4 weeks post-exposure (Nduka and Harrison, 1980). Snails' soft tissues were centrifuged and supernatant was used for antioxidant enzymes determination. Total number of hemocytes, types and morphological alterations were recorded (Abou-El-nour *et al*, 2015).

Antioxidant enzymes: Antioxidant enzymes Catalase (CAT, Aebi, 1984), Glutathione reduced (GSH, Beutler *et al*, 1963), Lipid peroxide (LPO, Ohkawa *et al*, 1979) and Superoxide dismutase (SOD, Nishikimi *et al*, 1972) were determined in supernatant previously prepared from tissue homogenate of the experimental and control groups.

Statistical analysis: **D**ata were analyzed for significant differences between mean values of the test and control groups by "t" test (Spiegel, 1981), and between percenttages by Chi-square (Southwood, 1978), using the SPSS computer program (version 20.0 Windows).

Results

Toxicity of *C. citrinus* methanol extract to *B. alexandrina* snails was 5.9 times that of water extract on basis of LC_{90} after 24h of exposure (37.8 & 223.6ppm, respectively). Methanol extract impact on biological, histological and immunological aspects of *B. alexandrina* was tested (Tab. 1).

Survival rate of snails at 1st shedding: Exposure of *B. alexandrina* snails to LC_{10} (9.3 ppm) and LC_{25} (17.2 ppm) from *C. citrinus* methanol extract for 24h either at 1 day pre, during or at 15 days post-miracidial exposure reduced their survival rate at 1st shedding compared to their corresponding control groups (Tab. 2). Reduction rates of groups exposed to LC_{10} at 1day pre, during and at 15 days post- exposure were 18.7%, 26.7% and 64.7%, respectively (*P*<0.05 & 0.001). Raising concentration to LC_{25} caused more reduction for groups at during- & 15 days post-exposure were 40% & 70.6%, respectively (*P*<0.01&0.001).

The 24h of snails' exposure to LC_{10} of *C*. *citrinus* extract at 1 day pre-, during or at 15

days post-exposure reduced infection with *S.* mansoni. Infection rate during miracidial exposure was 72.73% compared to 86.67% for control group (P<0.05). More reduction was at 15 days post-exposure, as infection rate was 33.33% compared to 82.35% for control snails (P<0.001). Also, infection rate of snails treated with LC₂₅ at 15 days postexposure (40%) was significantly lower than corresponded controls (82.35%, P<0.001).

Cercarial shedding (cercariae/snail): Cercarial production/snail from the groups exposed to LC_{10} and LC_{25} at the three modes of miracidial exposure was less than corresponding control groups. Highest reduction rate was in snails exposed to LC_{25} at 15 days post-exposure, recording 63.1% compared to 18.4% &45.8% for groups treated at 1 day pre- and during exposure, respectively.

Snails' survival rate (L_X) : Exposure of S. mansoni uninfected snails to LC10 & LC25 of extract for 24h weekly for 4 successive weeks reduced survival rate (L_x) to be 0.56 &0.50 at the 4th week, respectively, compared to 0.90 in control group (Tab. 3). Infected snails' L_X values were sharply reduced; 0.43 & 0.38 at 2nd week post exposure to these concentrations, respectively, as compared with 0.6 for infected untreated control group. Few snails survived only at LC_{25} within three weeks, dead at 4th week (L_x=0.0) compared to 0.23 for infected untreated control snails. Snails' fecundity (M_x) and reproductive rate (R₀): S. mansoni uninfected snails exposed to LC_{10} & LC_{25} of C. citrinus extract laid few number of eggs/ snail/week throughout the experimental period (4 weeks) compared to control group. M_X values at 2nd week were 2.0 & 2.4 eggs/ snail compared to 4.5eggs/control. At 4th week, treated snails suffered much as few survived at LC₂₅ laid very few eggs (M_x=0.01eggs/snail), but at LC₁₀ failed to lay eggs ($M_X=0.0$).

Exposure of *S. mansoni* infected snails to the concentrations decreased M_X values compared to infected untreated controls (Tab. 3). At 3rd week, M_X values for snails

exposed to LC_{10} & LC_{25} were 0.02 & 0.1 eggs/snail compared to 1.1eggs/infected untreated controls. By 4th week, snails survived at LC_{10} failed to lay eggs (M_X=0.0) compared to 0.8eggs/infected untreated controls.

As to reproductive rate (R_0) of uninfected snails exposed to extract, was reduced as compared with controls. Similar observations were recorded for *S. mansoni* infected snails treated with the concentrations. So, R_0 was reduced by 16% in each concentration in proportion to infected untreated controls.

Histology of treated snails: Exposure of snails to LC₅₀ of methanol extract for 24h revealed certain histopathological changes in digestive gland. Normal histological structure of B. alexandrina digestive gland includes glandular tubules interspersed within connective tissues. The epithelium is rested on thin basement membrane; at least 3-4 types of cells can be recognized in the snail, digestive, calcium and excretory cells (Fig. 1A). Exposure to C. citrinus caused wall thickness of digestive gland cells, losing their shape and hyaline substance appeared in enlarged digestive lumen (Fig. 1B). B. alexandrina exposed to S. mansoni miracidia only for 24h (infected untreated) different developmental stages of sporocycts in the digestive gland tubules and cercariae after 3 weeks of miracidial exposure were detected (Fig.1C). In case of *B. alexandrina* snails exposed for 24h to S. mansoni miracidia and treated with LC50 of C. citrinus (infected treated) atrophied shrunk sporocycts (S), big vacuoles (V) and thickened degenerated cells and connective tissue between the digestive gland tubules were observed (Fig. 1D).

Total hemocytes for *S. mansoni* uninfected and infected snails: A significant increase in total hemocytes of uninfected snails post 24h of exposure to *C. citrinus* extract was recorded (Tab. 4). Recorded number at LC₂₅ was 3250 cells/ml compared to 2340 cells/ ml for control group (P<0.05). After one week of exposure, this parameter was significantly decreased to 750cells/ml for snails at LC₁₀ compared to 2150 cells/ml for controls (P < 0.001). After 2 &4 weeks of exposure total number of hemocytes for snails treated with LC_{10} & LC_{25} was not significant from corresponding controls. After 4 weeks exposure, total number of hemocytes of snails at LC₂₅ was 3050 cells/ml compared to 2700 cells/ ml for controls (P>0.05). As to S. mansoni infected B. alexandrina total number of hemocytes post 24h of exposure to LC_{10} & LC₂₅ of extract was significantly increased compared to controls. At LC₂₅ was 3000 cells/ml compared to 1600 cells/ml for controls (P < 0.001). This was significant decreased for snails at 1, 2 & 4 weeks post exposure compared to corresponding controls. Number of hemocytes after 4 weeks of snails exposure to LC₂₅ was 1950 cells/ml compared to 2950cells/ml for controls (*P*<0.01).

Hemocytes' types and percentages were affected by snails' exposure to extract concentrations. Hyalinocytes values after 24h, 1 & 2 weeks of exposure to LC₂₅ were significantly higher than controls, but large granulocytes were significantly lower. Long period to 4 weeks significantly increased granulocytes for snails exposed to LC₁₀ recording compared to 41% for controls 65% (P < 0.001). Snails treated with C. citrinus concentrations post exposure to S. mansoni miracidia, types of hemocytes were deteriorated and large granulocytes at 4th week of treatment were significantly higher (51%) than controls (21%, *P*<0.001).

The light microscopy photographs of uninfected untreated (control) *B. alexandrina* hemocytes (Fig. 2A) showed two distinct types of hemocytes, granulocytes and hyalinocytes. Granulocytes showed two types, large and small cells. Large ones were variable in size with small nucleus and dense cytoplasmic contents due to refractile granules. Hyalinocytes were small circular in shape with a clear dense cell membrane and a large nucleus. For *S. mansoni* unin-fected treated snails (Fig. 2B&C) hyaline-cytes emit fine long extension (Fp) and a degeneration of large granulocyte cytoplasm with condensed vacuoles (Cv), irregular cell walls and large eccentric nucleus. In *S. mansoni* infected snails (Fig. 2D) large granulocytes (LG) exhibited deformed cell walls (Dw) and condensed granules (CGR). Moreover, large granulocytes of infected treated snails showed incomplete cell division with large granules and having two nuclei (Fig. 2E).

The activities of the enzymes CAT and SOD increased in tissue homogenate of *S. mansoni* uninfected snails post one week of exposure to LC_{10} & LC_{25} of extract compared to controls (Tab. 5). Enzymes activeties after 2 and 4 weeks of snail exposure to concentrations were less than controls. After 4 weeks of snails exposure to LC_{25} CAT activity was 9.9U/g tissue compared to 27.3U/g tissue of controls (reduction rate= 63.7%, P<0.001).

For lipid peroxide (LPO) concentration in snails' tissue homogenate after one week exposure to LC₂₅ of extract showed few elevation compared to controls (119.4nm/g tissue compared to 107.2nm/g tissue) After 2 & 4 weeks, enzyme concentrations decreased than controls. Glutathione (GSH) concentration was reduced after exposure compared to controls. As to S. mansoni infected snails, activity of CAT decreased by exposure to extract compared to untreated infected groups. SOD & GSH activities were increased after 24h and one week of treating infected snails with tested concentrations compared infected controls, after 4 weeks of exposure to LC25 GSH concentrations did not significantly different from infected untreated controls.

Table 1: Molluscicidial activity of water and methanol extracts of C. citrinus against B. alexandrina (24 hrs exposure):

Extract	LC_{10} ppm	LC ₂₅ ppm	LC ₅₀ ppm	LC ₉₀ ppm	Slope
methanol	9.3	17.2	22.3	37.8	1.6
water	114.1	140.0	168.9	223.6	1.3

Table 2: Effect of methanol extract of *C. citrinus* leaves on survival rate at 1st shedding, infection rate, prepatent period, duration of shedding and cercarial production of *B. alexandrina* exposed to *S. mansoni* miracidia (reduction%):

Miracidial	Cono	Sumiro10/	Infec-	Prepatent	duration of	No. of cercariae
exposure	Conc.	Survival%	tion%	period	shedding	/ snail
1 day pre-	Control	80.00	81.25	23.15±3.36	39.31±14.16	4402.54±496.44
exposure	LC ₁₀	65.00 (18.7%)*	76.92	24.50±3.69	31.50±7.56	3951.00±891.13 (10.2%)
	LC ₂₅	65.00 (18.7%)*	92.31**	27.42±4.68**	29.17±13.95*	3590.67±590.72 (18.4%) ***
15 days	Control	75.00	86.67	22.08±2.63	47.92±14.81	3549.77±841.87
post ex-	LC ₁₀	55.00 (26.7%)*	72.73 *	23.63±3.62	38.50±9.90*	2169.67±1067.04 (38.9%) **
posure	LC ₂₅	45.00 (40.0%) **	88.89	22.75±3.24	36.75±10.42 *	1923.00±237.03 (45.8%) ***
During ex-	Control	85.00	82.35	22.50±4.05	36.00±15.25	2907.0±735.44
posure	LC ₁₀	30.00 (64.7%) ***	33.33 ***	21.00±0	31.50±14.85	2896.5±965.50 (0.38%)
	LC ₂₅	25.00 (70.6%)***	40.00 ***	24.50±4.95	24.50±14.85	1072.5±950.50 (63.1%) **

 Table 3: Survival rate (L_x) and fecundity (M_x) of S. mansoni uninfected and infected B. alexandrina treated with sublethal concentrations of methanol extract of C. citrinus (24h weekly for 4 successive weeks):

	Co	ontrol (u	ntreated	l)			Treated										
Un	Uninfected		Infected		Uninfected				Infected								
Chiniceteu		mootod		LC ₁₀ (9.3 ppm)		LC ₂₅ (17.2 ppm)		LC ₁₀ (9.3 ppm)		LC ₂₅ (17.2 ppm)							
Lx	Mx	LxMx	Lx	Mx	LxMx	Lx	Mx	LxMx	Lx	Mx	LxMx	Lx	Mx	LxMx	Lx	Mx	LxMx
1.00	5.30	5.30	1.00	5.30	5.30	1.00	5.30	5.30	1.00	5.30	5.30	1	5.30	5.30	1	5.30	5.30
1.00	3.70	3.70	0.76	1.6	1.22	0.95	1.40	1.33	0.73	3.10	2.26	0.7	1.4	0.98	0.65	1.1	0.72
1.00	4.50	4.50	0.6	0.2	0.12	0.85	2.00	1.70	0.70	2.40	1.68	0.43	0.04	0.018	0.38	0.8	0.3
0.90	2.70	2.43	0.56	1.1	0.62	0.73	0.01	0.01	0.65	1.10	0.72	0.23	0.02	0.005	0.06	0.1	0.006
0.90	6.50	5.85	0.23	0.8	0.184	0.56	0.00	0.00	0.50	0.01	0.01	0.07	0.0	0.0	0.0	0.0	0.0
		21.			7.4			8.34			9.97			6.30			6.33
		78			4 **			**			*			**			**
					65.8			61.7			54.2			71.1			70.9
	Un Lx 1.00 1.00 0.90 0.90	Lx Mx 1.00 5.30 1.00 3.70 1.00 3.70 0.90 2.70 0.90 6.50	Control (u Uninfected Lx Mx 1.00 5.30 5.30 5.30 1.00 3.70 1.00 4.50 0.90 2.70 2.43 0.90 6.50 5.85 21. 78	Control (untreated Uninfected In Lx Mx LxMx Lx 1.00 5.30 5.30 1.00 1.00 3.70 3.70 0.76 1.00 4.50 4.50 0.6 0.90 2.70 2.43 0.56 0.90 6.50 5.85 0.23 21. 78 78	Control (untreated) Uninfected Infected Lx Mx LxMx Lx Mx 1.00 5.30 5.30 1.00 5.30 1.00 3.70 3.70 0.76 1.6 1.00 4.50 4.50 0.6 0.2 0.90 2.70 2.43 0.56 1.1 0.90 6.50 5.85 0.23 0.8 1.00 4.50 21. 78 1.6	Control (untreated) Uninfected Infected Lx Mx LxMx Lx Mx LxMx 1.00 5.30 5.30 1.00 5.30 5.30 1.00 3.70 3.70 0.76 1.6 1.22 1.00 4.50 4.50 0.6 0.2 0.12 0.90 2.70 2.43 0.56 1.1 0.62 0.90 6.50 5.85 0.23 0.8 0.184 21. 78 21. 7.4 4 *** 21. 7.4 5.8	$\begin{tabular}{ c c c c c } \hline Uninfecter $	$\begin{tabular}{ c c c c c } \hline $Control (untreated) & $First Control (un$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

*, **& *** = Significantly different from control at *p*< 0.05, *p*<0.01 & *p*<0.001, respectively

 Table 4: Total number & types (%) of hemocytes in S. mansoni uninfected and infected B. alexandrina treated with methanol extract of C. citrinus: Hyalinocytes (Hy), Small granulocytes (SG) and Large granulocytes (LG).

Expos-	Hamaartaa (Na.)	Con	trol	Treated						
ure	Remocytes (No.)	Uninfacted	Infacted	Uninfected Infected						
period	a Types (%)	Unimected	Infected	LC_{10}	LC ₂₅	LC_{10}	LC ₂₅			
	Total no.	2340±295	1600±155	3170±320*	3250±370*	2050±250*	3000±265** *			
24h	Hy	21	8	25	31*	12	8			
	SG	26	38	29	35	42	20**			
	LG	53	54	46	34*	46	72**			
	Total no.	2150±306	1150 ± 128	720±140***	850±90***	250±48***	750±52***			
1wook	Ну	18	54	21	30*	33**	48			
IWCCK	SG	32	28	56***	55***	54***	33			
	LG	50	18	23***	15***	13	19			
	Total no.	2500±290	3500±344	2350±203	3100±380	2900±380	2450±205**			
Quant	Ну	17	51	46***	49***	50	44			
Zweek	SG	33	21	33	22	29	37**			
	LG	50	28	21***	29**	21	19			
	Total no.	2700±307	2950±325	2600±230	3050±270	2250±223*	1950±134**			
Awook	Ну	19	34	13	18	28	28			
HWEEK	SG	40	45	22**	29	37	21***			
	LG	41	21	65***	53*	35***	51***			

*, **& *** =Significantly different from control at p< 0.05, p<0.01 & p<0.001, respectively

E		Cont	trol	Treated						
Exposure	Enzymes	Uninfacted	Infacted	Uninfe	ected	Infected				
period		Unimected	Infected	LC_{10}	LC ₂₅	LC_{10}	LC ₂₅			
	SOD	257.3±14.3	345.4±13.2	274.4±8.7	290.7±9.4*	407.8±18.2**	512.5±15.6***			
246	CAT	29.6±2.7	69.4±7.7	27.6±2.0	34.2±1.8*	63.7±8.4	41.5±7.2**			
2411	GSH	4.1±0.4	2.6±0.7	3.6±0.25	2.9±0.3**	3.3±0.85	2.6±0.76			
	LPO	103.3±3.2	123.7±5.6	102.0±1.9	94.7±2.4*	109.8±7.5*	117.4±6.0			
	SOD	241.8±15	312.6±12.8	292.3±7.8**	302.5±9.7**	368.3±11.4**	427.2±13.5***			
1 maalr	CAT	26.8±3.5	51.7±6.8	43.6±6.6*	47.9±6.3**	47.9±6.3	38.7±4.7*			
Tweek	GSH	3.7±0.27	4.2±0.6	2.7±0.31**	2.3±0.28**	5.2±0.6*	5.8±0.55*			
	LPO	107.8±2.6	142.4±6.9	112.3±3.4	119.4±2.8**	106.5±4.1***	117.7±3.9**			
	SOD	248.5±9.8	322.9±9.8	200.7±7.4**	217.6±9.6*	199.4±10.6***	204.7±13.2***			
0 1	CAT	24.7±2.2	27.4±8.7	14.7±5.4*	12.6±3.9**	21.6±2.7	14.5±3.8*			
2 week	GSH	4.2±0.25	6.4±0.73	3.0±0.27**	2.5±0.18***	5.9±0.75	7.5±0.63			
	LPO	111.3±4.1	113.6±4.5	101.7±2.2*	98.3±3.4**	123.7±4.7*	134.5±9.2*			
	SOD	249.2±11.2	199.6±8.8	168.8±10.7***	194.7±14.2**	118.6±17.3**	106.3±15***			
4 week	CAT	27.3±2.4	13.7±3.4	11.8±2.2***	9.9±1.5***	11.6±7.2	8.9±7.7			
4 week	GSH	3.6±0.3	7.8±0.5	2.8±0.1**	2.2±0.21**	6.4±0.45*	7.9±0.48			
	LPO	106.2±2.2	99.4±5.8	96.5±4.7*	81.7±7.8**	134.8±6.9**	151.6±11.7**			
*, **& *** = Significantly different from control at $p < 0.05$, $p < 0.01$ & $p < 0.001$, respectively										

Table 5: Antioxidants in tissue homogenate of *S. mansoni* uninfected and infected *B. alexandrina* exposed to methanol extract of *C. citrinus* for 24h weekly for 4 successive weeks:

Discussion

Although chemotherapy is one of the most important methods for schistosomiasis control, there is still a need for more selective and efficient molluscicides for controlling the snail intermediate hosts of this parasite (WHO, 2010). The current data showed high toxicity of the plant methanol extract to the snails in comparison with water extract. This was supported by the pronounced negative impact of low con-centrations from this extract on survival rates of S. mansoni infected and uninfected snails compared to uninfected untreated (clean control) snails recorded in this work. This agrees with Kamel et al. (2010) on the high molluscicidal activity of methanol extract from the plant Draceana draco in comparison with the water suspension of its dry powder against B. alexandrina snails.

The present results showed a marked reduction in survival rates of *S. mansoni* uninfected *B. alexandrina* exposed for 24h/week for 4 successive weeks to sublethal concentrations from methanol extract of the plant *C. citrinus* in comparison with uninfected untreated control snails. This wass in agreement with previous records on survival rate of *B. alexandrina* snails post exposure to plants *Syzygium jambos* (Gawish, 2008) and *H. canariensis* (Abdel Rahman and Hassan, 2008). Similar observations were recorded post exposure of *B. alexandrina* snails to the plants D. stramonium and S. sesban (Mahmoud et al., 2011) and Z. officinale (Bakry et al, 2013). The toxic effect of C. citrinus to the snails may be due to the presence of the active ingredients cyanidine, delphinine, flavonoids, ursolic acid and saponins (Watson and Dallwitz, 1992). Molluscicidal activities of the plants Cestrum purpureum and Yucca filamentose marginata (Hamid et al, 2015 a; b) against B. alexandrina snails were due to the presence of the active chemical groups saponins, sterols and flavonoids. Undoubtedly, there was a high correlation between plants containing saponins and their molluscicidal activity (Lemma, 1970). The survival rate (L_X) of snails exposed to S. mansoni miracidia (infected untreated snails) was less than that of normal treated control snails, which indicated that infection was considerably harmful to snails. This coincided with Abdel Hamid et al. (2007) and El-Emam et al. (2015) on the low survival rate of B. alexandrina post infection with S. mansoni and/or E. liei.

The results revealed a suppression of *S. mansoni* cercarial production from *B. alex-andrina* exposed to low concentrations of *C. citrinus* methanol extract for 24h either pre-, during or post-miracidial exposure, in addition to a decrease in snails' survival rates and in duration of cercarial shedding.

This was supported by the disturbances in the activities of the oxidative enzymes and total number and types of hemocytes of snails infected and treated with this extract that could be a reflection of the interruption in their physiological and defence mechanisms which rendering them to be unsuitable for development of *S. mansoni* larval stages within their tissues. These findings agreed with using different plant species against infectivity of *S. mansoni* miracidia to *B. alexandrina* and on cercarial production from infected ones (Sharaf El-Din *et al*, 2001; Mahmoud *et al*, 2011).

The results elicited few snails' eggs were laid by B. alexandrina snails post exposure to methanol extract which reflected on suppression of their net reproductive rate (R_0) compared to control group. Also, treated snails stopped oviposition at the 4th week of the experiment. This agreed with Hasheesh et al. (2011) on egg lying of B. truncatus exposed to methanol extract of the plant S. sesban. Similar observations were recorded on suppressing egg laying of *B. alexandrina* post continuous exposure to ethanol extract of the plant Z. officinale (Bakry et al, 2013). This was supported by the present adverse effects of the tested extract on the histological structure of their digestive gland and on morphological features of their hemocytes. Ibrahim (2006) found that snail's reproduction is an energy demanding process and any energy diverted by snails treated with molluscicides to detoxificate and repair the damage in their tissues exerted by these compounds could potentially reduce their fecundity and reproductive rates. Similarly, the fecundity and reproductive rates of B. alexandrina were highly suppressed post exposure to sublethal concentrations of fungicide Topas (Mohamed et al, 2010) and the dry powder of D. stramonium and S. sesban (Mahmoud et al, 2011). This reduction in fecundity could be due to lipophilic pattern of botanical extracts which affect the lipid layers of the cell membrane of treated snails that destroy their specific permeability properties and this may lead to water loss causing dehydration that might lead to abnormalities of egg-laying capacity of these snails (Rashed, 2002).

Histological examination of digestive gland of S. mansoni infected and uninfected B. alexandrina snails treated with C. citrinus methanol extract revealed degeneration of gland tubules in addition to atrophied shrunked sporocysts, big vacuoles and degeneration of connective tissue between the gland tubules. This was in line with El-Deeb and El-Nahas (2005) who recorded severe damage in the digestive and hermaphrodite glands of B. alexandrina treated with Euphorbia nubica extract. Also, Bode et al. (1996) noticed an increase in secretory cells and decreased in digestive ones besides an intense autolysis of cell membrane structure in the digestive gland of B. glabrata snails treated with T. tetraptera extract. Similar, chloroform extract of the plant H. tuberculatum (Rizk et al. 2012) and methanol extract of Callistemon viminalis leaves (Gohar et al. 2014) destruct the epithelial layer and degenerate the secretory cells of B. alexandrina digestive gland.

The present increment of total number of hemocytes in B. alexandrina treated with C. citrinus post 24h of exposure to S. mansoni miracidia as well as in normal treated snails could be an immediate stimulation of their internal defense system to attack and encapsulate the invading miracidia and to take a part in repairing the tissue damages caused by the parasite penetration, also an attempt to decrease and minimize the harmful effects of the plant extract. These results agreed with Araque et al. (2003) observations on migration of *B. glabrata* hemocytes towards the invasive S. mansoni miracidia and surrounding them completely. Similar observations were found in Oncomelonia nosophora snails infected with S. japonicum (Sasaki et al, 2005) and in B. alexandrina infected with S. mansoni and treated with M. azadrach fruit water extract (Mohamed et al, 2006). Sharaf El-Din (2003) reported that double infection of B. alexandrina with S. mansoni and E. liei increased the hemocytes in their hemolymph and added that treatment could stimulate hematopoietic organs to produce a number of new undifferentiated hemocytes through the first three weeks post exposure to miracidia.

Hemolymph granulocytes and hyalinocytes of B. alexandrina infected with S. mansoni only and of those infected and treated with plant extract suffered from deleterious morphological deteriorations, due to their important role in defense mechanism against these stresses (infection and plant extract). Similar results were observed by Eissa et al. (2002) who noticed deformation and hemolysis of hemocytes with ruptured cell membranes and degenerated nuclei of B. alexandrina snails exposed to E. peplus water suspension. Also, B. alexandrina hemocytes showed obvious abnormalities and irregular aggregation especially in snails exposed continuously for 21 days to LC₂₅ of Artemether (Mossalem et al, 2013). Granulocytes and hyalinocytes showed cell apoptosis with degenerated cytoplasm, released granules and shrinked nucleus in *B. alexandrina* treated with LC10 & LC25 of the herbicides Herphosate and Stomp (Abdel-Ghaffar et al, 2016) and silver nanoparticles of the fungi P. variotii and A. niger (Abdel-Hamid and Mekawy, 2014).

In the present results, the activities of the antioxidant enzymes CAT & SOD increased in tissue homogenate of uninfected snails one week post exposure to LC_{10} & LC_{25} . The activities after 2 &4 weeks exposure were less than in control groups. This deterioration in may be due to snails immune system activation. This agreed with Hamed et al. (2006) who found that exposure of B. alexandrina to A. attenuate increased the activities of CAT and SOD. Enhancement of oxygen free radicals production post snails exposure stimulated antioxidant activities to cope with increased oxidative stress and protect snails' cells from damage (Torres et al., 2002).

The current data exhibited no changes in the activity of the antioxidant enzyme GSH

in tissue homogenate of S. mansoni infected B. alexandrina snails treated with LC_{10} and LC₂₅ of the plant C. citrinus methanol extract. This is in agreement with Kristoff et al. (2008) who reported that there is no change in GSH activity in *B. glabrata* snails exposed to some organophosphate pesticides. But, El-Emam et al. (2015) found an elevation in GSH activity in hemolymph of B. alexandrina snails exposed to the nematode P. hermaphrodita and/or S.mansoni miracidia. It was stated that the increase in GSH activity was associated by a depletion of lipid peroxide in snails exposed to S.mansoni miracidia and/or the larvae of the nematode P. hermaphrodita (Abou-Elnour et al, 2015). This was previously documented by Fahmy et al. (2014) who observed a correlation between enhancement of lipid perioxidation and consequence depletion of GSH in B. alexandrina snails exposed to zinc oxide nanoparticles.

Conclusion

The outcome results showed that *C. citrinus* methanol extract has a molluscicidal potency against *B. alexandrina* snails and reduce *S. mansoni* cercarial production from infected snails which could reduce schistosomiasis transmission. But, isolation of the plant active ingredients needs more studies against other snails of medical importance.

References

Abdel-Ghaffar, F, Ahmed, AK, Bakry, FA, Rabei, I, Ibrahim, A, 2016: The impact of three herbicides on biological and histological aspects of *B. alexandrina*, intermediate fost of *S. mansoni*. Malacol. 59, 2:197-210.

Abdel-Hamid, H, Mekawey, AI, 2014: Biological and hematological response of *Biomphalaria alexandrina* to mycobiosynthesis silver nanoparticles. J. Egypt. Soc. Parasitol. 44, 3:626-36. Abdel-Hamid, H, El-Husieny, A, Tantawy, A, El-Dafrawy, SM, 2007: Histological studies on the consequence antagonism of *Echinostoma liei* to *Schistosoma mansoni* in *Biomphalaria alexandrina* snails. Egypt. J. Exp. Biol. (Zool) 3:145-50.

Abdel Rahman, EH, Hassan, SE, 2008: Molluscicidal saponins from leaves of *Hedera canariensis.* J. Egypt. Soc. Parasitol. 38, 1:293-304. Abou-Elnour, BM, El-Emam, MA, Mahmoud, MB, Ibrahim, WL, Youssef, AA, 2015: Alternations in parasitological, biochemical and molecular parameters of *Biomphalaria alexandrina*snails, intermediate host of *Schistosoma mansoni*, induced post exposure to the proposed snail biocontrol agent *Phasmarhabditis hermaphrodita* nematode. <u>Asian Pacific J. Trop. Dis.</u> 5, 12:957-63.

Aebi, H, 1984: Catalase in vitro. Meth. Enzymol. 105:121-6.

Araque, W, Barrios, EE, Rodriguez, P, Delgado, VS, Finol, HJ, 2003: Ultrastructural study of the *in vitro* interaction between *Biomphalaria glabrata* I hemocytes and *Schistosoma mansoni* miracidia. Mem. Inst. Oswaldo. Cruz 98, 7I:905-13.

Arumugam, M, Romestand, B, Torreilles, J, Roch, P, 2000: *In vitro* production of superoxide and nitric oxide (as nitrite and nitrarte) by *Mytilus galloprovincia* haemocytes upon incubation with PMA or laminarin or during yeast phagocytosis. Eur. J. Cell Biol. 79:513-9.

Bakry, FA, Abd El-Atti, MS, Ismail, S, 2013: Effect of *Zingiber officinal* (ginger) on electrophoresis analysis and biochemical aspects of *Biomphalaria alexandrina* snails infected with *Schistosoma mansoni*. Int. J. Sci. Engin. Res. 4, 11:1147-54.

Bakry, FA, 2009: Use of some plant extracts to control *Biomphalaria alexandrina* snails with emphasis on some biological effects. Pest. Biochem. Physiol. 95:159-65.

Belete, EM, 2015: Schistosomiasis control strategies, with emphasis on snail control using molluscicides. J. Hlth. Sci. Res. 5, 8:572-84.

Beutler, E, Duron, O, Kelly, MB, 1963: Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61:882-8

Bode, AU, Adewunmi, CO, Dorfler, G, Becer, W, 1996: The effect of extracts from *Tetrapleura tetraptera* (Taub.) and Bayluscide on cells and tissue structures of *Biomphalaria glabrata* (Say). J. Ethnopharmacol. 50, 2:103-13.

Dhawan, V, 2005: Garlic supplementation prevents oxidative DNA damage in essential hypertension, Mol. Cell. Biochem. 275:85–94.

Eissa, SH, Rizk, ET, Abou-Shafey, AE, Atlam, A, 2002: Toxicological effects of *Euphorbia peplus* water suspension on haemocytes of the freshwater snails *Biomphalaria alexandrina* and *Lanistes carinatus*. Proc. ICBS, 2, 2:417-47. **Dongmo, BN, Dongmo, PM, Ngoune, LT, Kwazou, NL, Zollo, PH, et al, 2010:** Antifungal activities of essential oils of some Cameroonian Myrtaceae on *Aspergillus flavus* Link ex. Fries. Asian J. Exp. Biol. Sci. 1:907-14.

El Dib, RA, El-Shenawy, SM, 2008: Phenolic constituents and biological activities of the aerial parts of *Callistemon viminalis* (Sol. Ex Gaertner) G.Don ex Loudon. Bull. Fac. Pharma. (Cairo Univ.) 46:223-35.

El-Deeb, FA, El-Nahas, HA, 2005: Comparative studies on the impact of three Egyptian plants against *Biomphalaria alexandrina* and *Lymnaea caillaudi* snails. J. Egypt. Ger. Soc. Zool. 46, D:103-24.

El-Emam, MA, Mahmoud, MB, Abou-El Nour, BM, Ibrahim, WL, Youssef, AA, 2015: Impact of double infection of *Biomphalaria alexandrina* snails with *schistosoma mansoni* and *Echinostoma liei* on their biological, molecular, immunological and histological parameters. J. Biol. Chem. Environ. Sci. 10, 1: 131-45.

Fahmy, SR, Abdel-Ghaffar, F, Bakry, FA, Sayed, DA, 2014: Ecotoxicological effect of sublethal exposure to zinc oxide nanoparticles on freshwater snail *Biomphalaria alexandrina*. Arch. Environ. Contam. Toxicol. 67:192-202.

Gawish, F, Mossalem, HS, Abu El Einin, H, 2008: Bioassay of the plant *Callistemon Citrinus* against *Bulinus truncatus* snails and their infection with *Schistosoma haematobium*. Egypt. J. Schisto. Infect. Endem. Dis. 30:1-63.

Gawish, FA, 2008: Activity of the plant Syzygium jambos against Biomphalaria alexandrina snails' reproduction and infection with Schistosoma mansoni, New Egypt. J. Med. 39: 103-10.

Gohar, AA, Maatooq, GT, Gadara, SR, Aboelmaaty, WA, El-Shazly, AM, 2014: Molluscicidal activity of the methanol extracts of *Callistemon viminalis* (Sol. ex Gaertner) G.Don ex Loudon Fruits, Bark and Leaves against *Biomphalaria alexandrina* snails. Iran. J. Pharm. Res. 13, 2:505-14

Hamid, M, El-Amin, S, Abdel-Fattah, 2015a: Isolation and identification of some compounds from molluscicidaly active plant *Yucca filamintaza* "Marginata". Archives 1:19-30.

Hamid, M, El-Amin, S, Abdel-Fattah, 2015b: Molluscicidal activity of some constituents isolated from *Cestrum purpureum*. Archives 2:59-72.

Hamed, RR, Maharem, TM, Farid, NM, Ramadan, Kh, Abdel Aziz, MH, 2006: Effect of Agave attenuata extracts on detoxification enzymes of *Biomphlaria alexandrina*. Environment 26:157-64.

Hasheesh, WS, Mohamed, RT, Abd El-Monem, S, 2011: Biological and physiological parameters of *Bulinus truncatus* snails exposed to methanol extract of the plant *Sesbania sesban* plant. Adv. Biol. Chem. 1:65-73.

Ibrahim, MM, 2006: Energy allocation patterns in *Biomphalaria alexandrina* snails in response to cadmium exposure and *Schistosoma mansoni* infection. Exp. Parasitol. 112:31-6.

Kamel, EG, El-Emam, MA, Mahmoud, SSM, Fouda, FM, Bayaumy, FE, 2010: Attenuation of *Schistosoma mansoni* cercarial infectivity to albino mice by methanol extract of some plant species. Pest. Bioc. Phys. 98:342-8.

Kamel, EG, El-Emam, MA, Mahmoud, SSM, Fouda, FM, Bayaumy, FE, 2011: Parasitological and biochemical parameters in *Schistosoma mansoni* infected mice with methanol extract of the plants *Chenopodium ambrosioides*, *Conyza dioscorides* and *Sesbania sesban*. J. Parasitol. 60:388-92.

King, CH, Bertsch, D, 2015: Historical perspective: Snail control to prevent schistosomiasis. J. PLoS. Negl. Trop. Dis. 9, 4:36-57

Kristoff, G, Verrengia Guerrero, NR, Cochon, AC, 2008: Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in *Biomphalaria glabrata* and *Lumbriculus variegatus*. Chemosphere 72:1333-9.

Larson, MK, Bender, RC, Bayne, CJ, 2014: Resistance of *Biomphalaria glabrata* 13-16-R1 snails to *Schistosoma mansoni* PR1 is a function of haemocyte abundance and constitutive levels of specific transcripts in haemocytes. Int. J. Parasitol. 44:343-53

Lemma, A, 1970: Laboratory and field evaluation of the molluscicidal properties of *Phytolacca dodecandra*. Bull. WHO, 42 597-612.

Livingstone, DR, Chipman, JK, Lowe, DM, Minier, C, Mitchelmore, CL, *et al*, 2000: Development of biomarkers to detect the effects of organic pollution on aquatic in vertebrates: recent molecular, genotoxic, cellular and immunological studies on the comm; On mussel (*Mytilus edulis L*.) and other mytilids. Int. J. Environ. Pollut. 13:56-91.

Mahmoud, MB, Ibrahim, WL, AbouEl-Nour, BM, EL-Emam, MA, Youssif, AA, 2011: Biological and biochemical parameters of *Biomphalaria alexandrina* snails exposed to the plants *Datura stramonium* and *Sesbania sesban* as water suspensions of their dry powder. Pest. Bioch. Physiol. 99: 96-104.

Mohamed, AH, Osman, GY, Mohamed, AM, Elhoseiny, A, 2006: Efficiency of *Melia azadr-ach* fruit water extract on *Biomphalaria alexand-rina* snails. Egypt. J. Exp. Biol. (Zool.), 2:181-8.

Mohamed, AH, Osman, GY, Mohamed, AM, Elhoseiny, A, 2010: Effect of Topas (fungicide) on egg laying capacity and hermaphrodite gland of *Biomphalaria alexandrina* snails. Egypt. J. Exp. Biol. (Zool.), 6, 1:99-105.

Mohamed, AM,El Emam, MA, Osman, GY, Abdel-Hamid, H, Ali, REM, 2012: Effect of basudin, selecron and the phytoalkaloid colchicine (pesticides) on biological and mole-cular parameters of *Biomphalaria alexandrina* snails. Pest. Biochem. Physiol. 102: 68-78.

Mossalem, HS, Abdel-Hamid, H, El- Shinnawy, NA, 2013: Impact of Artemether on some histological and histochemical parameters in *Biomphalaria alexandrina*. Afr. J. Pharm. Pharmacol. 7, 31:2220-30.

Nduku, WK, Harrison, AD, 1980: Cationic responses of organs and haemolymph of *Biomphalaria pfeifferi* (Krauss), *Biomphalaria glabrata* (Say) and *Helisoma trivolvis* (Say) (Gastropoda: Planorbirdae) to cationic alterations of the medium. Hydrobiologia 68:119-38

Ohkawa, H, Ohishi, N, Yagi, K, 1979: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Ana.l Biochem. 95:351-8.

Ragheb, M, El-Tayeb, T, El-Emam, M, Amer, M, Bashter, A, 2013: Copper chlorophyllin and magnesium chlorophyllin as molluscicidal agents against *Biomphalaria alexandrina* snails. Asian Ac-ad. Res. J. Multidisc. 1, 16:229-54.

Rashed, AA, 2002: Biological studies on the snail intermediate hosts of schistosomiasis with a special emphasis on using larval *Echinostomes* as biocontrol agents against larval schistosomes and snails. J. Egypt. Soc. Parasitol. 32: 775-84.

Renwrantz, L, Schmalmack, W, Redel, R, Friebel, B, Schneewei, H, 1996: Conversion of phenoloxidase and peroxidase indicators in individual haemocytes of *Mytilus edilis* specimens and isolation of phenoloxidase from haemocyte extract. J. Comp. Physiol. B, 165:647-58.

Rizk, MZ, Metwally, NS, Hamed, MA, Mohamed AM, 2012: Correlation between steroid sex hormones, egg laying capacity and cercarial shedding in *Biomphalaria alexandrina* snails after treatment with *Haplophyllum tuberculatum*. Exp. Parasitol. 132: 171-9.

Sampath, S, Kalimuthu, B, Veeramani, V, Janardhanam, S, Baran, MA, *et al*, 2016: Evaluation of total antioxidant and free radical scavenging 3 activities of *Callistemon citrinus* (Curtis) Skeels extracts 4 by biochemical and electron paramagnetic resonance analyses. <u>RSC</u> Adv. 6:12382-90.

Sasaki, Y, Kirinoki, M, Chigusa, Y, 2005: Comparative studies of the defense mechanism against *Schistosoma japonicum* of schistosomesusceptible and -resistant *Oncomelania nosophora*. Parasitol. Int. 54, 3:157-65.

Sharaf El-Din, AT, 2003: Effects of double infection with *Echinostoma liei* and *Schistosoma mansoni* on hemoglobin content and circulating haemocytes in the haemolymph of the host snail *Biomphalaria alexandrina*. Egypt. J. Schist. Infect. Endem. Dis. 25:41-52.

Sharaf El-Din, AT, Bakry, FA, Tantawy, A, 2001: Molluscicidal activity of *Zygophyllum simplex* (Family; Zygophyllaceae) against *Biomphalaria alexandrina* and *Bulinus truncatus*. Egypt. J. Aqua. Biol. Fish. 4:131-43.

Southwood, TRE, 1978: Ecological Methods. Halsted Press, Chapman and Hall. London.

Spiegel, D, 1981: Viet man grief work using hypnosis. Am. J. Clin. Hyp. 24, 1:33-40.

Tantawy, A, Mostafa, BB, Sharaf El-Din, AT, 2004: Molluscicidal activity of *Synadenium gra-ndii* (Euphorbiaceae) against *Biomphalaria alexandrina* and *Bulinus truncates* the intermediate host snails of schistosomiasis in Egypt and their infectivity with the parasite. Egypt. J. Sci. 14:183-96.

Torres, MA, Testa, CP, Gaspari, C, Masutti, MB, Panitz, CMN, *et al*, 2002: Oxidative stress in the mussel *Mytella guyanensis* from polluted mangroves on Santa Catarina Island, Brazil. Mari. Poll. Bull. 44:923-32.

Watson, L, Dallwitz, MJ, 1992: The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Website <u>http://biodiversity.uno.edu/ delta/</u>

WHO, 2010: Schistosomiasis, Fact Sheet No. 115, February. <u>http://www.who.int/ mediacentre</u>/factsheets/fs115/en.

WHO, 2016: Schistosomiasis, Fact Sheet No. 115, updated February http: // www.WHO.int/ mediacentre/ factsheets/fs115/en.

Explanation of figures

Fig. 1: Light photomicrographs showing transverse section in digestive gland of *B. alexandrina*. (A) untreated controls, (B) exposed for 24h to LC_{50} of extract of *C. citrinus*, (C) exposed to S. *mansoni* miracidia only showed cercariae and sporocycts in digestive gland after cercarial shedding, (D) exposed for 24h to S. *mansoni* and treated with LC_{50} stained with H and E. (At) atrophied cells, (Cer) cercariae, (Ct) connective tissues, (E) epithelial cell, (H) hyaline substance, (L) lumen, shrunk sporocycts (S), (Sp) sporocyst, (V) vacuoles.

Fig. 2: Light photomicrograph of hemocytes from *B. alexandrina* snail. (A) control, (B&C) morphological abnormalities in hemocytes post 24h of exposure to *C. citrius* extract, (D) *S. mansoni* infected *B. alexandrina*, (E) infected treated with extract of *C. citrius* stained with Giemsa stain (1000x). (CGR) condensed granules, (Cy) cytoplasm, (Dw), deformed cell wall, (Fp) filopodia, (GR) granules, (Hy) haylino-cytes, (LG, large and SG, small) granulocytes, (N) nucleus, (Ir) irregular cell wall.

