NON-HUMAN TRANSPALNTATION OF LIVING LIVER GRAFT IN DIFFERENT POSSIBLE SITES

By

ALAA ISMAIL

Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt (Correspondence: ahismail2002@gmail.com)

Abstract

Orthotopic liver transplantation became a standard operation. The recipients' number was increasing because of the wide indications. In many centers, many of the waiting patients died due to shortage of liver grafts. This study implanted living dog liver graft, in three different sites. The results showed that implantation as orthotopic non- auxiliary was better than the other sites.

Key words: Egypt, Liver transplantation, Dog, Recipient abdominal cavity

Introduction

No doubt, the chronic liver diseases are common worldwide, especially in developing countries, and cirrhotic patients' progression has had a resurgence of interest because of liver transplantations and new therapies for complications of end-stage cirrhosis (Cholongitas et al, 2005). Cirrhosis represents a late-stage of progressive hepatic fibrosis characterized by distortion of hepatic architecture and regenerative nodules formation. Advanced cirrhosis is generally considered to be irreversible while early stages may regress with specific treatments aimed at underlying cause (Gines et al, 1987). There are more than a hundred different kinds of liver disease (D'Amico et al, 1986). Samuel et al. (1997) declared that acute and chronic liver diseases due to hepatitis viruses were the main indications for liver transplantation.

The commonest agents encountered in Egypt were liver flukes (Haseeb et al, 2002), mainly schistosomiasis (Abo-Madyan et al, 2004), viral hepatitis (Zakaria et al, 2007), especially HCV (Madwar et al, 1999), liver cancer (Hifnawy et al, 2004), and discovered hereditary (Gharib et al, 2011), or genetic variations (Motawi et al, 2013).

Starzl et al. (1963) in USA reported that the first human liver transplantations (LT) were performed from donation after circulatory death (DCD) in the 1960s. But, orthotopic liver transplantation (OLT) is the treatment of choice for patients with end-stage chronic liver diseases, acute liver failure, and some metabolic liver diseases from younger with trauma as cause of death, brain death, hemodynamic stability at the time of procurement, and absence of steatosis, chronic liver disease, and transmission disease (Feng et al, 2006). Another source of liver grafts resulted from the fact that the liver is composed of two half-liver, which was surgically divided. Each half-liver has its own portal vein, hepatic artery and bile duct. Partition of the liver may allow the obtaining of two grafts from a liver retrieved in a cadaver donor and of one graft from a living donor. In several centers, technique was markedly improved by using reduced size grafts from older heart-beating cadaver donors (De Jong et al, 1996).

This study aimed to assess the experimental feasibility resecting segment II from a living donor to be implanted in three different sites in the recipient abdominal cavity. The study evaluated three possible sites for partial liver transplantation.

Materials and Methods

The work was done on 30 adult male mongrel dogs weighed 12-16Kg, kindly obtained from the Governmental Veterinary Hospital. They were clinically and laboratory examined to approve that they were healthy ones. Sodium pentobarbital was used for the induction of anesthesia which was maintained by endotracheal intubation and halothane.

Ethical consideration: This study was conducted in accordance with the guidelines for dealing with experimental animals (Helsinki, 1964) and approved by Ain Shams University, Egypt.
Technique of resection was standardized adopted (Couinaud, 1957) for the three types of recipient operations, by resected segment II & III with its left hepatic vein.

Preservation was done by flushing and cooling the graft via its portal vein and hepatic artery using 4°C Ringers solution, and stored in cold Euro-Collins solution.

Surgical operation: The donor operation was performed through a midline incision. Round ligament, falciform ligaments were divided. Using an operative microscope, the terminal 2 cm of the left hepatic vein were dissected from the surrounding parenchyma and encircled. Then, the upper left portion of the hepatic artery, hepatic duct and portal vein was achieved. According to the animal, two to three glisssonian pedicles going from the horizontal portion of the left glisssonian pedicle to the quadrate lobe were ligated and divided, as well as one or two short pedicles going to Spigelian lobe. Then, without clamping the vascular structures going to liver left part, liver capsule was incised along a line between the right side of the round ligament and the right side of the end of the left hepatic vein. Transsection was done step by step using a Kelly clamp with ligature or coagulation of each pedicle; it was conducted posteriorly and slightly to the left ending in front of caudate portion right border of Spigelian lobe. Technique allowed maintaining normal blood to the liver left part during the parenchymal transection.

Finally, the left branches of hepatic artery and portal vein and left hepatic vein clamped and divided. After a warm ischemia time of less than 2 min, the graft was flushed and cooled via the left portal branch and the left hepatic artery using 200 ml of 4°C Ringer’s solution and immediately transplanted. In donor, the stumps of left portal branch, and left hepatic duct were either ligated or sutured. Before abdomen was closed without drainage, inspection of the remaining liver in all cases showed a small area of congestion on its left and anterior part, close to the transsection plane.

1- Auxiliary heterotopic partial liver transplantation of a bi-segmental graft from a living donor in the splenic bed: Both donor and recipient operation were simultaneously done. The liver graft was flushed cooled via its portal vein and its hepatic artery using 4°C Ringer’s lactate solution during operation. The graft was implanted in the splenic bed of the recipient after removal of the spleen and leaving a long stump of splenic artery and vein. Splenic vein was flushed by 1/10,000 heparinized saline solution before its clamping to prevent thrombosis. The liver graft was rotated 180° in the frontal plane so that the end of the hepatic vein was in downward position; also the graft was rotated 180 degree in the vertical plane so that the cut surface of the graft is facing medially. The graft was implanted in the splenic bed by anastomosing its left portal branch end-to-end to the splenic vein using 6-0 prolene continuous suture. The hepatic artery was anastomosed end-to-end to the splenic artery using 6-0 prolene continuous suture. The hepatic vein was anastomised end-to-end to proximal end of the left renal vein after its thorough dissection and ligation very near to the kidney hilum. The hepatic duct of the graft was implanted end-to-side on a Roux-en-Y in a jejunal loop. The portal vein of the recipient was narrowed to half of its diameter to allow blood to flow to the graft. At the operation end careful haemostasis was done and the abdomen was closed by ordinary technique. The dogs were then extubated as soon as it awoke.

2- Auxiliary heteropic partial liver transplantation of bisegmental graft from a living donor in the right paravenebral gutter: The recipient operation was done by a midline incision. The harvesting procedure itself was standardized in all types of operations. The right paravertebral gutter was carefully dissected to find a bed suitable for the graft size. Mobilization of portal vein and exposure of infra-hepatic inferior, vena cava was an essential step. The graft was placed in the space after its rotation 180 degree in the frontal pl-
ane so as to bring hepatic vein downward and hepatic pedicle upward. Hepatic vein of the graft was anastomosed end-to-end side to right anterior surface of the inferior vena cava below the site of the right renal vein. Portal branch of the graft was anastomosed end-to-end to the portal vein of the recipient. The hepatic duct was implanted end-to-side as a Roux-en-Y in a jejunal loop. Dogs were infused by 750 ml lactated Ringer’s solution, because of the dissection of the P.C. gutter.

3- Orthotopic non auxiliary partial liver transplantation of biseggmental graft from living donor: The recipient operation started by complete dissection of the liver and total hepatectomy without its vascular supply, i.e. leaving vessels in its place after clamping. The clamped and transected hepatic veins while recipient I.V.C. was clamped above and below, the liver was preserved in continuity. Confluence of the three hepatic veins was left open while small hepatic veins were ligated. Graft was implanted by anastomosing the hepatic vein end-to-side of I.V.C. at the site of recipient veins, using 5-0 prolene suture Graft hepatic artery was anastomosed to the recipient hepatic artery end-to-end using 5-0 prolene suture. Portal vein was anastomosed end-to-end to recipient portal vein, using 6-0 prolene suture. Clamps were removed and bleeding or biliary leakages were managed. Duct was reconstructed as end-to-side choledochojunostomy by using a Roux-en-Y loop with insertion of T tube. Dogs were infused by 500ml Ringer’s solution & 500ml plasma expanders as ooze occurred during operation.

Results

Seven dogs died, four either at operation end or two days after due to acute anemia resulted from repeated hemorrhagic episodes during transection of the liver parynchyma and in availability of blood transfusion. The other three died 4-10 days after operation due to severe intra-abdominal infection. The remaining 23 dogs were alive 3 months post operation. Three of them were systematically killed. No abdominal complications were noted. Macroscopically, the remaining liver right part was slightly enlarged as compared to time of surgery, but their surface, color and consistency were normal. Microscopically, liver histological sections were normal. The immunospressive drugs to all recipient dogs started during operation with dose according to the body weight. Three months post operation; three dogs from each group were sacrificed for follow-up macroscopically and microscopically. Other dogs lived normal life. Mortality rate was 20% in dogs submitted to partial orthotopic liver transplantation. Post-operative death from bleeding was due to graft congestion in one dog led to subcapsular hemorrhage, second dog due leakage vena cava anastomosis, and third due to bleeding from cut surface of graft liver.

Details were given in tables (1, 2, & 3) and figures (1, 2, 3, & 4)

<table>
<thead>
<tr>
<th>Operation complications</th>
<th>APLT in splenic n=10</th>
<th>ALPT in right paravertebral gutter n=10</th>
<th>Partial LTX n =10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding</td>
<td>2/10</td>
<td>3/10</td>
<td>3/10</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1/10</td>
<td>2/10</td>
<td>1/10</td>
</tr>
<tr>
<td>Graft necrosis</td>
<td>1/10</td>
<td>1/10</td>
<td>--</td>
</tr>
<tr>
<td>Venous thrombosis</td>
<td>2/10</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

ALPT= Auxiliary Partial Liver Transplantation, LTX=Orthotopic Liver Transplantation

Table 2: Mortality and its causes in three types of partial liver transplantation

<table>
<thead>
<tr>
<th>Cause of death Type of Operation</th>
<th>Bleeding</th>
<th>Sepsis</th>
<th>Graft Necrosis</th>
<th>Venous Thrombosis</th>
<th>Mortality %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplnt in splenic bed</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>60%</td>
</tr>
<tr>
<td>Aplnt in right para vertebral gutter</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>30%</td>
</tr>
<tr>
<td>Partial LTX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Operative infusion

<table>
<thead>
<tr>
<th>Type of Operation infusion</th>
<th>APLT in splenic bed</th>
<th>ALPT in right paravertebral gutter</th>
<th>Partial LTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringer’s Lactate solution</td>
<td>500 ml</td>
<td>750</td>
<td>500 ml</td>
</tr>
<tr>
<td>Plasma expanders</td>
<td>--</td>
<td>--</td>
<td>500 ml</td>
</tr>
</tbody>
</table>
In the present study, graft was implanted in 3 sites. The first one was auxiliary heterotopic in the splenic bed, with enough space for the graft after splenectomy, the stumps of the recipient vessels after graft rotation of 180 degree in horizontal plane. Also, heparin locally in splenic vein was important in preventing complications after splenectomy. The recipient portal vein was narrowed to the half of its diameter to oblige the portal blood to flow to the graft. So, this site was easy to find space for the graft, but with high incidence of vascular thrombosis (20%). Two dogs died from bleeding due to lack of blood transfusion, and high incidence of venous thrombosis due to the long splenic vein and stagnation of blood inside. Lygidakis (1988) reported that construction of a long side-to-side anastomosis between the inferior caval vein of the receiver and the inferior caval vein of the graft provided a free and unimpeded outflow from the graft and prevents kinking at the anastomotic site.

The second site was implanted in the right paracolic gutter. But, there was much difficulty to dissect a space for the graft without much bleeding and dogs were infused by 750ml Ringer lactated solution which saved two out of three, which developed bleeding during operation. Also, two dogs developed severe, abdominal sepsis and died from dissection of the para colic gutter which caused in spread of bacterial secondary infection. Lygidakis and Houssin (1984) reported that due of the rarity of child donors; in cases of adult donors room requirement for the liver graft was a major technical obstacle to liver transplantation in children. They performed an orthotopic transplantation with an adult liver that was reduced to left lobe. Absence of technically-related complications suggests that this procedure might facilitate the performance of liver transplantation in children.

In the third site which was orthotopic non-auxiliary; expecting bleeding during hepatectomy of the recipient liver, the dogs were infused by 500ml plasma expanders. This infusion amount saved 2 I.V.C., only clamping of the portal vein before hepatectomy without excision of the recipient I.V.C. This agreed with Ringe et al. (1988) reported that reduced-size liver transplantation was safely with the described type of hepatic vein reconstruction, when large donor organs were used for small children.

No doubt, the liver transplants are reasonably safe procedures with good survival rates (Samuel and Feray, 2000). Nevertheless, many factors can influence the patients’ chances of a successful surgery, and determine how long they live after surgery. These factors include their overall health, lifestyle habits, and additional conditions (Ferreira et al., 2013). Also, Zarrinpar and Busuttil (2013) reported that for people, especially children after liver transplantation must maintain general health through proper nutrition, rest, exercise, and stress reduction. Avoid people who have infectious diseases especially peo-
ple with active viral infections, such as chicken pox, mumps, measles, mononucleosis, tuberculosis, colds, or the flu. Take medications to prevent infection, as prescribed.

Conclusion

Removal of live animal liver part was not a risky operation; its complications were minimal. In orthotopic non auxiliary partial liver transplantation of a bi-segmental liver graft with conservation of the vena cava of the recipient would probably be preferable, its only problem is bleeding which can be corrected by blood transfusion.

References

De Jong, IJ, Reinders, ME, Kranenburg, J, de Meester, J, Persijn, GG, 1996: Multiorgan do-

De Jong, JJ, Reinders, ME, Kranenburg, J, de Meester, J, Persijn, GG, 1996: Multiorgan do-

Welch, CS, 1955: A note on transplantation of the whole liver in dogs. Transplant. Bull. 2:54-9

Explanation of figures

Fig. 1: Segmented anatomy of human liver.
Figs. 2, 3, & 4: Illustrative author hand drawing.